Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence
نویسنده
چکیده
We present a series of models for the plasma properties along open magnetic flux tubes rooted in solar coronal holes, streamers, and active regions. These models represent the first self-consistent solutions that combine: (1) chromospheric heating driven by an empirically guided acoustic wave spectrum, (2) coronal heating from Alfvén waves that have been partially reflected, then damped by anisotropic turbulent cascade, and (3) solar wind acceleration from gradients of gas pressure, acoustic wave pressure, and Alfvén wave pressure. The only input parameters are the photospheric lower boundary conditions for the waves and the radial dependence of the background magnetic field along the flux tube. We have not included multifluid or collisionless effects (e.g., preferential ion heating) which are not yet fully understood. For a single choice for the photospheric wave properties, our models produce a realistic range of slow and fast solar wind conditions by varying only the coronal magnetic field. Specifically, a two-dimensional model of coronal holes and streamers at solar minimum reproduces the latitudinal bifurcation of slow and fast streams seen by Ulysses. The radial gradient of the Alfvén speed affects where the waves are reflected and damped, and thus whether energy is deposited below or above the Parker critical point. As predicted by earlier studies, a larger coronal “expansion factor” gives rise to a slower and denser wind, higher temperature at the coronal base, less intense Alfvén waves at 1 AU, and correlative trends for commonly measured ratios of ion charge states and FIP-sensitive abundances that are in general agreement with observations. These models offer supporting evidence for the idea that coronal heating and solar wind acceleration (in open magnetic flux tubes) can occur as a result of wave dissipation and turbulent cascade. Subject headings: MHD — solar wind — Sun: atmospheric motions — Sun: corona — turbulence — waves
منابع مشابه
Coronal Heating versus Solar Wind Acceleration
Parker’s initial insights from 1958 provided a key causal link between the heating of the solar corona and the acceleration of the solar wind. However, we still do not know what fraction of the solar wind’s mass, momentum, and energy flux is driven by Parker-type gas pressure gradients, and what fraction is driven by, e.g., wave-particle interactions or turbulence. SOHO has been pivotal in brin...
متن کاملAn anisotropic turbulent model for solar coronal heating
Context. We present a self-consistent model of solar coronal heating in which we include the dynamical effect of the background magnetic field along a coronal structure by using exact results from wave MHD turbulence. Aims. We evaluate the heating rate and the microturbulent velocity for comparison with observations in the quiet corona, active regions and also coronal holes. Methods. The corona...
متن کاملAlfvénic Turbulence in the Extended Solar Corona: Kinetic Effects and Proton Heating
We present a model of magnetohydrodynamic (MHD) turbulence in the extended solar corona that contains the effects of collisionless dissipation and anisotropic particle heating. Recent observations have shown that preferential heating and acceleration of positive ions occur in the first few solar radii of the high-speed solar wind. Measurements made by the Ultraviolet Coronagraph Spectrometer ab...
متن کاملAnisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data.
The first direct determination of the inertial range energy cascade rate, using an anisotropic form of Yaglom's law for magnetohydrodynamic turbulence, is obtained in the solar wind with multispacecraft measurements. The two-point mixed third-order structure functions of Elsässer fluctuations are integrated over a sphere in magnetic field-aligned coordinates, and the result is consistent with a...
متن کاملSelf-similar signature of the active solar corona within the inertial range of solar-wind turbulence.
We quantify the scaling of magnetic energy density in the inertial range of solar-wind turbulence seen in situ at 1 AU with respect to solar activity. At solar maximum, when the coronal magnetic field is dynamic and topologically complex, we find self-similar scaling in the solar wind, whereas at solar minimum, when the coronal fields are more ordered, we find multifractality. This quantifies t...
متن کامل